big.Above
// Constants describing the Accuracy of a Float.
const Above = +1
big.AwayFromZero
// These constants define supported rounding modes.
const AwayFromZero = iota
big.Below
// Constants describing the Accuracy of a Float.
const Below = -1
big.Ebias
const Ebias = 1<<(Esize-1) - 1
big.Ebias
const Ebias = 1<<(Esize-1) - 1
big.Emax
const Emax = Ebias
big.Emax
const Emax = Ebias
big.Emin
const Emin = 1 - Ebias
big.Emin
const Emin = 1 - Ebias
big.Esize
// exponent
const Esize = Fsize - Msize1
big.Esize
// exponent
const Esize = Fsize - Msize1
big.Exact
// Constants describing the Accuracy of a Float.
const Exact = 0
big.Fsize
// float size in bits
const Fsize = 32
big.Fsize
// float size in bits
const Fsize = 64
big.MaxBase
// MaxBase is the largest number base accepted for string conversions.
const MaxBase = 10 + ('z' - 'a' + 1) + ('Z' - 'A' + 1)
big.MaxExp
// Exponent and precision limits.
const MaxExp = math.MaxInt32
big.MaxPrec
// Exponent and precision limits.
const MaxPrec = math.MaxUint32
big.MinExp
// Exponent and precision limits.
const MinExp = math.MinInt32
big.Msize
// mantissa
const Msize = 23
big.Msize
// mantissa
const Msize = 52
big.Msize1
const Msize1 = Msize + 1
big.Msize1
const Msize1 = Msize + 1
big.Msize2
const Msize2 = Msize1 + 1
big.Msize2
const Msize2 = Msize1 + 1
big.ToNearestAway
// These constants define supported rounding modes.
const ToNearestAway = iota
big.ToNearestEven
// These constants define supported rounding modes.
const ToNearestEven = iota
big.ToNegativeInf
// These constants define supported rounding modes.
const ToNegativeInf = iota
big.ToPositiveInf
// These constants define supported rounding modes.
const ToPositiveInf = iota
big.ToZero
// These constants define supported rounding modes.
const ToZero = iota
big.A
var A *Int
big.B
var B *Int
big.K
// C(n, k) == n * (n-1) * ... * (n-k+1) / k * (k-1) * ... * 1
// == n * (n-1) * ... * (n-k+1) / 1 * (1+1) * ... * k
//
// Using the multiplicative formula produces smaller values
// at each step, requiring fewer allocations and computations:
//
// z = 1
// for i := 0; i < k; i = i+1 {
// z *= n-i
// z /= i+1
// }
//
// finally to avoid computing i+1 twice per loop:
//
// z = 1
// i := 0
// for i < k {
// z *= n-i
// i++
// z /= i
// }
var K Int