go1.20.5
GoThrough

sort.Interface

// An implementation of Interface can be sorted by the routines in this package. // The methods refer to elements of the underlying collection by integer index. type Interface interface { // Len is the number of elements in the collection. Len() int // Less reports whether the element with index i // must sort before the element with index j. // // If both Less(i, j) and Less(j, i) are false, // then the elements at index i and j are considered equal. // Sort may place equal elements in any order in the final result, // while Stable preserves the original input order of equal elements. // // Less must describe a transitive ordering: // - if both Less(i, j) and Less(j, k) are true, then Less(i, k) must be true as well. // - if both Less(i, j) and Less(j, k) are false, then Less(i, k) must be false as well. // // Note that floating-point comparison (the < operator on float32 or float64 values) // is not a transitive ordering when not-a-number (NaN) values are involved. // See Float64Slice.Less for a correct implementation for floating-point values. Less(i int, j int) bool // Swap swaps the elements with indexes i and j. Swap(i int, j int) }

sort.Find

// Find uses binary search to find and return the smallest index i in [0, n) // at which cmp(i) <= 0. If there is no such index i, Find returns i = n. // The found result is true if i < n and cmp(i) == 0. // Find calls cmp(i) only for i in the range [0, n). // // To permit binary search, Find requires that cmp(i) > 0 for a leading // prefix of the range, cmp(i) == 0 in the middle, and cmp(i) < 0 for // the final suffix of the range. (Each subrange could be empty.) // The usual way to establish this condition is to interpret cmp(i) // as a comparison of a desired target value t against entry i in an // underlying indexed data structure x, returning <0, 0, and >0 // when t < x[i], t == x[i], and t > x[i], respectively. // // For example, to look for a particular string in a sorted, random-access // list of strings: // // i, found := sort.Find(x.Len(), func(i int) int { // return strings.Compare(target, x.At(i)) // }) // if found { // fmt.Printf("found %s at entry %d\n", target, i) // } else { // fmt.Printf("%s not found, would insert at %d", target, i) // } func Find(n int, cmp func(int) int) (i int, found bool)

sort.Float64s

// Float64s sorts a slice of float64s in increasing order. // Not-a-number (NaN) values are ordered before other values. func Float64s(x []float64)

sort.Float64sAreSorted

// Float64sAreSorted reports whether the slice x is sorted in increasing order, // with not-a-number (NaN) values before any other values. func Float64sAreSorted(x []float64) bool

sort.Ints

// Ints sorts a slice of ints in increasing order. func Ints(x []int)

sort.IntsAreSorted

// IntsAreSorted reports whether the slice x is sorted in increasing order. func IntsAreSorted(x []int) bool

sort.IsSorted

// IsSorted reports whether data is sorted. func IsSorted(data Interface) bool

sort.Reverse

// Reverse returns the reverse order for data. func Reverse(data Interface) Interface

sort.Search

// Search uses binary search to find and return the smallest index i // in [0, n) at which f(i) is true, assuming that on the range [0, n), // f(i) == true implies f(i+1) == true. That is, Search requires that // f is false for some (possibly empty) prefix of the input range [0, n) // and then true for the (possibly empty) remainder; Search returns // the first true index. If there is no such index, Search returns n. // (Note that the "not found" return value is not -1 as in, for instance, // strings.Index.) // Search calls f(i) only for i in the range [0, n). // // A common use of Search is to find the index i for a value x in // a sorted, indexable data structure such as an array or slice. // In this case, the argument f, typically a closure, captures the value // to be searched for, and how the data structure is indexed and // ordered. // // For instance, given a slice data sorted in ascending order, // the call Search(len(data), func(i int) bool { return data[i] >= 23 }) // returns the smallest index i such that data[i] >= 23. If the caller // wants to find whether 23 is in the slice, it must test data[i] == 23 // separately. // // Searching data sorted in descending order would use the <= // operator instead of the >= operator. // // To complete the example above, the following code tries to find the value // x in an integer slice data sorted in ascending order: // // x := 23 // i := sort.Search(len(data), func(i int) bool { return data[i] >= x }) // if i < len(data) && data[i] == x { // // x is present at data[i] // } else { // // x is not present in data, // // but i is the index where it would be inserted. // } // // As a more whimsical example, this program guesses your number: // // func GuessingGame() { // var s string // fmt.Printf("Pick an integer from 0 to 100.\n") // answer := sort.Search(100, func(i int) bool { // fmt.Printf("Is your number <= %d? ", i) // fmt.Scanf("%s", &s) // return s != "" && s[0] == 'y' // }) // fmt.Printf("Your number is %d.\n", answer) // } func Search(n int, f func(int) bool) int

sort.SearchFloat64s

// SearchFloat64s searches for x in a sorted slice of float64s and returns the index // as specified by Search. The return value is the index to insert x if x is not // present (it could be len(a)). // The slice must be sorted in ascending order. func SearchFloat64s(a []float64, x float64) int

sort.SearchInts

// SearchInts searches for x in a sorted slice of ints and returns the index // as specified by Search. The return value is the index to insert x if x is // not present (it could be len(a)). // The slice must be sorted in ascending order. func SearchInts(a []int, x int) int

sort.SearchStrings

// SearchStrings searches for x in a sorted slice of strings and returns the index // as specified by Search. The return value is the index to insert x if x is not // present (it could be len(a)). // The slice must be sorted in ascending order. func SearchStrings(a []string, x string) int

sort.Slice

// Slice sorts the slice x given the provided less function. // It panics if x is not a slice. // // The sort is not guaranteed to be stable: equal elements // may be reversed from their original order. // For a stable sort, use SliceStable. // // The less function must satisfy the same requirements as // the Interface type's Less method. func Slice(x any, less func(i, j int) bool)

sort.SliceIsSorted

// SliceIsSorted reports whether the slice x is sorted according to the provided less function. // It panics if x is not a slice. func SliceIsSorted(x any, less func(i, j int) bool) bool

sort.SliceStable

// SliceStable sorts the slice x using the provided less // function, keeping equal elements in their original order. // It panics if x is not a slice. // // The less function must satisfy the same requirements as // the Interface type's Less method. func SliceStable(x any, less func(i, j int) bool)

sort.Sort

// Sort sorts data in ascending order as determined by the Less method. // It makes one call to data.Len to determine n and O(n*log(n)) calls to // data.Less and data.Swap. The sort is not guaranteed to be stable. func Sort(data Interface)

sort.Stable

// Stable sorts data in ascending order as determined by the Less method, // while keeping the original order of equal elements. // // It makes one call to data.Len to determine n, O(n*log(n)) calls to // data.Less and O(n*log(n)*log(n)) calls to data.Swap. func Stable(data Interface)

sort.Strings

// Strings sorts a slice of strings in increasing order. func Strings(x []string)

sort.StringsAreSorted

// StringsAreSorted reports whether the slice x is sorted in increasing order. func StringsAreSorted(x []string) bool